
A gentle introduction to Gaussian Processes

..and how it is applied in Regression

V Lalchand
Supervisor: Dr. Chris Lester and Dr. Anita Faul

Oct 20, 2017

Bayesian learning is largely concerned with probability distributions
of random variables. Very often these probability distributions are
Gaussian (due to their nice analytical properties). A Gaussian
distribution is fully specified by its mean µ and variance σ2, once
they are specified we are able to generate samples from the
distribution.

The Gaussian can be extended to higher dimensions, for example,
a bi-variate Gaussian represents the probability distribution of a 2d
random vector x. Samples from a bi-variate Gaussian are vectors
instead of scalars.

What is a GP?

The most intuitive way of understanding GPs is understanding the
correspondence between Gaussian distributions and Gaussian
Processes.

GPs are just Gaussian probability distributions of random functions
f (x), hence sampling from a Gaussian process gives functions f (x).

f (x) ∼ GP(m(x), k(x , x ′)) (1)

where m(x) represents the mean function and k(x , x ′) represents a
covariance function.

The representation above states that function f is distributed as a
GP with mean function m and covariance function k.

What is a GP?

Each of these functions f (x) are defined over a continuous domain
(which means it can be evaluated at an infinite number of x ’s).
Another way of looking at a function f (x) is an infinite collection
of points or a infinite dimensional vector {f (xi)} i = 1, . . . ,∞

Hence, GPs are formally defined as infinite dimensional analogues
of the multivariate Gaussian probability distributions.

This definition in terms of multivariate Gaussian proves useful as
even if f (x) is defined over an infinite domain, realizations of f (x)
over any finite subset of points [f (x1), f (x2), f (x3), . . . , f (xm)] is
Gaussian.

Interpretation of functions f (x) in GP world

When we think of a ‘function’ in a mathematical sense we
immediately try to think of a parametric form. For example,
5x − 2, x2, 3x3 − x , ex .

But in GP world there is a fundamental shift in thinking about
functions. We completely abandon the parametric form
viewpoint.

Instead GPs represent functions f (x) obliquely (but rigorously) by
selecting the covariance function k(x , x ′).

The covariance function k

The covariance matrix K is constructed by applying the covariance
function k to pairs of data points on a finite subset of the infinite
domain.

K =


k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

...
...

k(xn, x1) k(xn, xn)


n×n

(2)

The covariance function (also called kernel function)
charactererizes how the function values relate to each other.

Note: The covariance function cannot be arbitrary functions that
act on pairs of data points, it needs to be a positive semi-definite
function.

The covariance function k

Selection of the covariance function is really the critical ingredient
in GP modelling. As it governs the shape, smoothness, periodicity
and stationary aspects of the functions in the distribution.

Samples from a GP with RBF covariance function

Samples from a GP with Brownian covariance function

Samples from a GP with Matern32 covariance function

Technicality on Sampling from a GP

One technicality to get out of the way is this:

A sample from a GP is a function defined on an infinite domain so
a sample from a GP is an infinite dimensional vector (yes!) but
since it is impossible to represent the infinite domain on a slide we
conduct an approximation (which is allowed by the fact that the
distributions are Gaussian)

We really want to get a feel for how these sample functions look,
hence we construct the covariance matrix applying the covariance
function to a finite subset of input locations (which when close
enough) give us a good idea of the underlying function.

In the above examples, we selected an adequate number (500) of
points from evenly spaced on a domain [0,1] and then sampled 20
times from a multivariate Gaussian with dimension = number of
data points. Hence, each sample path is a collection of 500 points.

Gaussian Process Regression

Now we look at how GPs are a way to solve the regression problem
in a powerful, non-parametric way.

Recap of Classical Linear Regression

In classical regression we are given some noisy data,

yi = f (xi) + εi (3)

where εi ∼ N(0, σ2), yi ∈ R and xi ∈ Rd and f is unknown.

Our aim is to approximate f and one way of doing so is by a linear
combination of suitable basis functions {φk} represented column
wise in a design matrix Φ = [φ1, . . . φk]. For example, in linear
regression the basis functions are just [1, x], in polynomial
regression (of degree atmost p) it is given by, [1, x , x2, . . . , xp].
The model is then,

y = Φw (4)

(using matrix notation so, w = (w1,w2, . . . ,wk)T ,
y = (y1, y2, . . . , yn)T) where the main task is to estimate the
weights/co-efficients (w) using a technique like least squares or
maximum likelihood.

Recap of Bayesian Linear Regression
In Bayesian linear regression we impose a prior over the weights
p(w) = N(µw ,Σw) and further assume that the dependent
variable follows a normal distribution → p(y|w) = N(wT Φ(x), σ2I)
(this term is the likelihood of the data).

The posterior distribution of the weights is derived by applying the
rule:

Posterior = Likelihood× Prior
Marginal Likelihood

where the marginal likelihood p(y) is given by
∫

p(y|w)p(w)dw

p(w|y) = p(y|w)p(w)∫
p(y|w)p(w)dw (5)

It turns out that the weight posterior is analytically tractable as
the distributions involved are all Gaussian.

Recap of Bayesian Linear Regression

p(w|y) = N(σ−2ΣΦT y, (Σ−1
w + σ−2ΦT Φ)−1) (6)

Once we have the weight posterior we can derive the posterior
predictive distribution for predicting a new data point x∗ by:

p(y∗|x∗, y) =
∫

p(y∗|w)p(w|y)dw (7)

= N(µ∗,Σ∗) (8)

Since both the terms inside the integral are Gaussian, the integral
is readily computed giving:

µ∗ = µT Φ(x∗) (9)
Σ∗ = σ2 + Φ(x∗)T Σw Φ(x∗) (10)

µT are the posterior mean weights.

Intuitive

In GP models all we are doing is combining the random functions
sampled from a specified GP prior distribution (with mean and
covariance function) with some observations. This has the effect of
rejecting the functions that do not pass through or near the
observations.

Intuitive
The resulting subset of functions that do interpolate or pass near
the observations form the GP posterior. In the example here the
functions from the posterior interpolate exactly, this is because we
consider noise free samples (from a noise less mathematical
function).

The GP posterior forms the basis of prediction and uncertaintly
measurement in GP models with mean (dotted line) for the former
and variance for the latter (notice that at the observations the
variance is 0).

Intuitive
In the example below the the training data (observations) come
from a function with some additive noise so the best we can do is
selection of functions which pass near enough to the data points
(how near can be controlled by the modeller).

GP Regression - Model set-up

We have the same data set-up as before except for simplicity
assume that the observations are noise free. So,

yi = f (xi) (11)

For succintness, we describe the training set as
{(xi , fi) : i = 1, . . . , n} and X and f to collectively represent the
training inputs and outputs.

We also have a collection of test data points X∗ and test outputs
f∗ whose distribution we seek.

GP Regression - Model set-up

We also have a prior over functions f (•).

f ∼ N(0, k(·, ·)) (12)

We select a 0 mean prior with the RBF kernel function for the
demonstration here (how to choose the kernel is a subject of active
research).

GP Regression - Model set-up

So far we have:

X : Training inputs
f : Training outputs
Prior f ∼ N(0, k(·, ·))
X∗ : Test inputs
f∗ : Test outputs
Out of these f∗ is unknown and needs to be predicted. The
question is given X , f and prior p(f) can we compute the posterior
predictive distribution p(f∗|f) (also called the GP posterior).

GP Regression - Prediction step

Turns out that we can analytically derive this distribution by the
property of multivariate Gaussians.

First, recall that for any function f (·) drawn from the GP prior the
marginal distribution over any subset of points (from the infinite
domain, say R) must have a joint multivariate Gaussian
distribution. In particular, this must be true for the training
outputs and test outputs enabling us to write,

(f , f∗) ∼ N
(
0,
[

K (X ,X) K (X ,X∗)
K (X∗,X) K (X∗,X∗)

])
(13)

∼ N
(
0,
[

K KT
∗

K∗ K∗∗

])
(14)

where the joint covariance matrix over the training and test points
is decomposed into smaller block matrices.

Deriving Conditional from Joint

Lemma: The property of conditional distributions of Gaussian
distributed random variables states that:

A1 ∼ N(µ1,Σ1) (15)
A2 ∼ N(µ2,Σ2) (16)

(A1,A2) ∼ N
(

(µ1, µ2),
[

Σ11 Σ12
Σ21 Σ22

])
(17)

A1|A2 ∼ N(µ3,Σ3) (18)

where, µ3 = µ1 + Σ12Σ−1
22 (A2 − µ2) (19)

Σ3 = Σ11 − Σ12Σ−1
22 Σ21 (20)

(Proof for conditioning is easily available on the internet, A2|A1
can be evaluated using symmetry)

GP Regression - Prediction

Once we have the defined the joint prior distribution we can get
the posterior distribution over functions f∗ just by conditioning on
the training outputs f .

f∗|f ∼ N(K∗K−1f ,K∗∗ − K∗K−1KT
∗) (21)

Summary:

The output of a GP model is a conditional Gaussian distribution
parametrised by a mean and variance.

The mean represents the best estimate and the variance is
interpreted as a measure of confidence in this estimate.

GPR in Action
In this example we use the RBF kernel as the covariance function
and assume a zero mean GP prior.

Random functions sampled from the prior:

GPR prediction

The training data were the 10 points in red.

We observe that a higher lengthscale in the covariance function
gives a more reasonable fit in this case. Further, the standard
deviation is close to zero at points where the prediction passes near
the points and zero if it exactly interpolates the points. It is higher
around areas where there are no training data points.

Once we have the posterior distribution it is possible to sample
from the posterior. The graph below depicts a sample of 100
functions.

Counter-intuitiveness about GPR

The steps involved in GPR cannot be decoupled into training and
testing as it is done in other types of regression. The posterior
predictive is just inferred directly from the properties of Gaussians
and the training data points.

Hence it is fair to think of GP models as probabilistic inference
rather than learning models.

These models can be optimised further by carefully tuning the
hyper-parameters of the kernel function either empirically (by
cross-validation) or by maximizing the likelihood (we don’t go into
this here but the book by Rasmussen offers a detailed look at
effect of optimizing parameters).

Open problem in GPs and generalized linear regression

Selecting the hyper-parameters for the covariance function is
exactly the problem of selecting the hyper-parameters for the basis
functions in generalized basis function regression.

The only difference is, in GPs the hyper-parameters are embeded in
the covariance matrix and in the basis function regression they are
embedded in the design matrix. Methods of model selection and
hyper-parameter selection in generalized regression are immediately
applicable to GPs.

Choice of kernels in GPR is a critical choice, ideally they would be
selected so as to take advantage of the structure in the data,
however this can be hard in high dimensions (we don’t examine
this issue here).

